NUCLEAR SHAPE ISOMERS

P. MÖLLER and A. J. SIERK

Theoretical Division, Los Alamos National Laboratory Los Alamos, NM 87545

R. BENGTSSON

Department of Mathematical Physics, Lund Institute of Technology, P. O. Box 118, SE-22100 Lund, Sweden

H. SAGAWA

Center for Mathematical Sciences, University of Aizu Aizu-Wakamatsu, Fukushima 965-80, Japan

and

T. ICHIKAWA

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Submitted to Atomic Data and Nuclear Data Tables May 10, 2010 Accepted September 14, 2010

We calculate potential-energy surfaces as functions of spheroidal (ϵ_2) , hexadecapole (ϵ_4) , and axial-asymmetry (γ) shape coordinates for 7206 nuclei from A=31 to A=290. We tabulate the deformations and energies of all minima deeper than 0.2 MeV and of the saddles between all pairs of minima. The tabulation is terminated at N=160. Our study is based on the FRLDM macroscopic-microscopic model defined in Atomic Data and Nuclear Data Tables [59, 185 (1995)]. We also present potential-energy contour plots versus ϵ_2 and γ for 1224 even-even nuclei in the region studied. We can identify nuclei for which a necessary condition for shape isomers occurs, namely multiple minima in the calculated potential-energy surface. We find that the vast majority of nuclear shape isomers occur in the A=80 region, the A=100 region, and in a more extended region centered around 208 Pb. A calculated region of shape isomers that has so far not been extensively explored is the region of neutron-deficient actinides "north-east" of 208 Pb.